Towards a methodology for software preservation

Esther Conway, Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones, Jim Woodcock (Univ of York)
Science and Technology Facilities Council

• Provide large-scale scientific facilities for UK Science
 – particularly in physics and astronomy

• E-Science Centre – at RAL and DL
 – Provides advanced IT development and services to the STFC Science Programme
 – Strong interest in Digital Curation of our science data
 – Keep the results alive and available
 – R&D Programme: DCC, CASPAR
STFC and Digital Curation

• STFC E-Science Centre interest in the preservation of its science outputs
 – Publications – library systems
 – Data – output from facilities, Petabyte Data Store, Data Centres
 – Keep the results alive and available

• R&D Programme in Digital Curation
 – Partner in the UK Digital Curation Centre
 – Coordinator of the EC Project CASPAR
 – VSR, SCARP, Parse-Insight, ….
 – Case studies in our own data
 – Roll-out to facilities
Work in Preservation of Software

- **JISC funded work: Tools & Guidelines for the preservation of software as a research output**
 - Used the JISC funded: Significant Properties of Software Report

- **Software very large topic**
 - Diversity in: *application of software and software architecture* and *scale of software and provenance* and *user interaction*

- **Project needed to limit scope**
 - Scientific and mathematical software
 - Limited commercial consideration
 - Limit consideration of user interaction

- **Finding information**
 - Literature
 - Talking to developers of products and software repositories

- **Developing a framework for software preservation properties.**
Software Preservation

• What is software preservation?
 – Storing a copy of a software product
 – Enabling its retrieval in the future
 – Enabling its reconstruction in the future
 – Enabling its execution in the future

Not what most software developers and maintainers do.
Why Preserve Software?

- **Museums and archives:**
 - Either supporting Hardware
 - E.g. Bletchley Park, Science Museum,
 - Or in its own right
 - Chilton Computing, Multics History Project

- **Preserving the work**
 - E.g. research work in Computing Science
 - Reproducible

- **Preserving the Data**
 - Preserving the software is necessary to preserve other data
 - Keep the data live and reusable
 - Prime motivation for STFC

- **Handling Legacy**
 - Specialised code from the past which still needs to be used
 - Usually seen as a problem!
Preservation Approaches

- **Adequacy**: How do we know we have captured enough?
 - Depends crucially on *Preservation Approach*

- **Technical Preservation. (techno-centric)**
 - Maintain the original software (binary), within the *original* operating environment.
 - Sometimes maintain the hardware as well

- **Emulation (data-centric).**
 - Re-creating the original operating environment by programming future platforms and operating systems to emulate the original environment,
 - so that software can be preserved in binary and run "as is".
 - E.g. British Library

- **Migration (process-centric).**
 - Transferring digital information to new platforms before the earlier one becomes obsolete.
 - Updating the software code to apply to a new software environment.
 - Reconfiguration and recompilation – “Porting”
 - An extreme version of migration may involve rewriting the original code from the specification.

- Different preservation approaches required different significant properties
 - Use a notion of *Performance to assess adequacy*
 - *Test case suites as tests of adequacy*
Conceptual Framework

Three aspects to the framework:

• A Performance Model for software
 – Determine what it means to preserve s/w
 – Retrieve – Reconstruct – Replay
 – Adequacy of performance of s/w

• Model for describing s/w artefacts
 – As complex digital objects.
 – Versions and variants

• Properties for preservation
 – For retrieve, reconstruct, replay
Preservation Approach and Software Process

Spec → Source Code → Binary

Rewrite from scratch

Migrate and rebuild from source code

Preserve or emulate environment

+ configure and build

Perform only gross functionality

Perform with small deviations from original

Perform “exactly” as original
Performance Model for Software

- Testing data performance to judge **adequacy** of the software performance.
- Important to maintain software test suite to assess preservation of significant properties of the software.
A software package (or indeed any digital object) can be said to perform adequately relative to a particular set of features (“significant properties”), if in a particular performance (that is after it has been subjected to a reconstruction and replay process) it preserves those significant properties to an acceptable tolerance.
A Framework for Software

Provide a general model of software digital objects
Relate each concept in the model with a set of significant properties

For different preservation approach, we need different significant properties to achieve a desired level of performance.

- **Product**
 - The whole software object under consideration
 - Could be single library module, or very large system (e.g. Linux)
 - Comes under one “authority” (legal control)
 - Defines “gross functionality”

- **Version**
 - Releases of the system
 - Characterises by changes in detailed functionality

- **Variant**
 - Versions for a particular platform
 - Characterised by operating system and environment

- **Instance**
 - A particular instance of a particular variant at a particular location
 - Ownership
 - An individual licence
 - Fixed to particular MAC or IP address, URLs etc.
Preservation Properties of Software

- What to attributes do we need to take into account?
 - Functionality
 - what it does and what data it depends on
 - Environment
 - platform, operating system, programming language
 - versions
 - Dependencies
 - Compilation dependency graph
 - Standard libraries
 - Other software products
 - Specialised hardware
 - Software is a Composite digital object
 - Collection of modules
 - Specifications, Configuration scripts, test suites, documentation
 - Architecture
 - Client/server, storage system, input / output
 - User interaction
 - Command line, User Interface
 - User model

Clearly Software is highly complex with a lot of factors which need to be considered
we need a framework to organise and express software.
Open Archival Information System (OAIS) – ISO standard for the preservation of digital object.

Software preservation properties are related to concepts in OAIS.
Preservation methodology and software

- Preliminary investigation of data holdings
 - Stakeholder and Archive Analysis
 - Identify Preservation Objective
 - Identify Designated User Community
 - Create Preservation Information Flow diagram
 - Create Preservation Strategies
 - Cost / Benefit Analysis
 - Preservation Action

- Is the creator of the software depositing it?
 - Work with the creator/depositor to gain information on what needs to be recorded for future use, e.g. test data, significant properties
 - Yes
 - No

- Does the depositor have knowledge of the purpose and creation of the software?
 - Yes
 - Is there anyone else who does know?
 - Yes
 - No
 - Establish information needed to be recorded for future use, e.g. test data, significant properties. Assess the completeness of the information to gauge likely value of preserved software.
 - No
 - Is documentation sufficient to determine preservation properties?
 - Yes
 - No
 - No

- Assess the importance of ingesting this software, bearing in mind that preservation will be difficult. Does this software need to be in a specialist repository?
Case study
Significant Properties Editing and Querying for Software (SPEQS)

• Java-based Eclipse plug-in
• Enables capturing software preservation properties during its development
• Demonstrates the concept of preservation tools that could be integrated within existing software development systems
Summary

• Exploration of the s/w preservation space
• Defined reasons, audience, some basic concepts
• Defined a framework which enables s/w to be included in OAIS preservation framework
• Fits in a OAIS compatible preservation methodology
• Validated in some practical scenarios
Questions?

http://sigsoft.dcc.rl.ac.uk/twiki/bin/view

http://www.e-science.stfc.ac.uk/projects/information/software.htm