
Updating DAITSS - Transitioning to a web service architecture

Randall Fischer, Carol Chou, Franco Lazzarino

Florida Center for Library Automation
5830 NW 39th Avenue

Gainesville, FL 32605, USA
rf@ufl.edu, cchou@ufl.edu, flaz@ufl.edu

Abstract
The Florida Digital Archive (FDA) is a long-term
preservation repository for the use of the libraries of the
public universities of Florida. The FDA uses locally-
developed software called DAITSS, which was designed
to perform the major functions of Ingest, Archival
Storage, Data Management and Dissemination in the
OAIS reference model. A DAITSS 2 project is in process
to re-write the application based on a distributed, Web
services model. This paper describes the major changes in
store for DAITSS 2.0, the rationale behind them, and the
issues involved in their design and implementation. These
changes include: moving from a monolithic to distributed
processing environment; implementation of modular
RESTful services; incorporation of existing tools,
services, and registries; and revising the internal data
model to be more conformant with the PREMIS data.
.

Introduction
The Florida Digital Archive (FDA) is a long-term
preservation repository for the use of the libraries of the
public universities of Florida. It has been in operation
since late 2005, and as of July 1, 2008 has archived
52,000 information packages comprising 3.6 million files
(10.4TB). Nine universities have agreements with the
FDA to archive their submissions, which are being
ingested at an average rate of 30-60 GB per day.
The FDA uses locally-developed software called
DAITSS, which was designed to perform the major
functions of Ingest, Archival Storage, Data Management
and Dissemination in the OAIS reference model.
DAITSS implements format-specific preservation
strategies including normalization, migration and
localization. ([Caplan 2007])
DAITSS was a pioneering digital preservation system.
When it was designed and developed, there were few
models of true preservation repositories and few external
tools available for performing specific functions such as
format validation and metadata extraction. It is
somewhat remarkable that in three years of FDA
operations, no major functional flaws have been
discovered and few enhancements to functionality are
pressing. The architecture of the application, however,
requires major redesign. DAITSS was coded as a
monolithic, self-contained system. A DAITSS 2 project
is in process to re-write the entire system based on a
distributed, Web services model.

The fundamental principles governing the original design
of DAITSS have not changed. These include:

 strict conformance to the OAIS functional
model;

 a requirement that the archived data store be
self-defining, so that if the DAITSS system
were lost, all known information about archived
objects could be recovered from the data store
itself;

 data once written to archival storage cannot be
altered; modified objects are in effect new
objects;

 original versions of archived files must be
retained unaltered.

In conformance with these principles, files are modified
only during the Ingest process as the SIP is transformed
into the AIP. DAITSS relies upon format normalization
and migration as preservation strategies, and these are
implemented as part of Ingest. All files in the SIP as
originally submitted are retained unaltered in perpetuity,
but other versions may be derived and added to the AIP.
The basic unit of storage and processing is an
Information Package. Each Information Package
consists of an XML descriptor and all of the content files
required to assemble one (and possibly more)
representations of an information object. The
Information Package is the only unit of input and output;
that is, even if only a single file in an AIP is needed, the
entire IP must be disseminated.
Because many years may pass between the time a file is
ingested and when it requires some preservation
treatment, dissemination requests are filled by a three-
step process. In the first step, the AIP is exported from
the repository and placed in the Ingest queue as a SIP. In
the second step, the AIP-cum-SIP is re-ingested, and
undergoes file identification, validation, and
transformation processing according to the current
version of the software. In the final step, the resulting
AIP is reformatted into a DIP and delivered to the
requestor.
This model will be retained in DAITSS 2. It has worked
well in practice and in fact has beneficial side-effects.
For example, the ingest model makes updates extremely
simple, and the dissemination model allows the FDA to
implement migration on request or mass migration
depending on the circumstances.
Another governing principle was to use standard formats
and metadata schemes whenever possible. However, at
the time DAITSS was initially developed, there were few

applicable standards to chose from. METS is used as the
format for SIP, AIP and DIP descriptors, and within the
METS document standard schema are used for format-
specific technical metadata for the few formats for which
such schema exist. These include the Audio Engineering
Society's draft AES schema for audio, the Metadata for
Images in XML schema (MIX) for raster images, and the
TextMD schema maintained by the Library of Congress
for text. The Preservation Metadata: Implementation
Strategies (PREMIS) Working Group was meeting as a
committee while DAITSS 1.0 was being coded, but the
PREMIS Data Dictionary had not yet been issued, so
DAITSS 1 is only partially PREMIS compliant.

Design goals for DAITSS 2
Papers While time has shown the principles, approach
and basic functionality of DAITSS to be sound, the
current generation of software has a number of problems:

 The application was in some respects over-built,
anticipating problems and functional
requirements which never materialized.
Unnecessary logical complexity makes the
software difficult to maintain and configure.

 DAITSS is written as monolithic Java
application, hindering its ability to scale.
Simple functions such as virus checking take a
significant portion of processing time, but
cannot easily be offloaded to an independent
server.

 There is a high degree of coupling between
components, making it hard to extend and
enhance the application. Adding support for a
new format, for example, requires changes to
dozens of classes, database schema, and XML
schema.

The second generation of DAITSS will address these
flaws. It will also improve PREMIS compliance
throughout, by bringing the internal data model into
closer conformance with the PREMIS three-part Object
model (file, representation, bit-stream), and by making
extensive use of PREMIS Object and Event descriptions.

Eliminate unnecessary complexity
Two features, initially thought to be desirable, have
proved problematic. The first is the concept of
preservation levels. DAITSS depositors (called
"affiliates") are allowed to associate each file format
with any of three preservation levels to be applied to files
contained in their SIPs: BIT, FULL or NONE. NONE
specifies that files of a given format will not be archived
at all. BIT specifies that files of a given format will be
archived but not subject to format transformation. FULL
indicates that files will be normalized and/or migrated as
appropriate.
Although it seemed like good customer service to give
FDA affiliates these options, in practice it has been
confusing to affiliates and problematic for the archive.
The option NONE was intended to allow an affiliate to
assemble a single package for multiple purposes; for
example, for archiving and for loading into a digital asset
management system. An unexpected problem is that

files in formats that cannot be correctly identified
because of DAITSS limitations might be assigned
preservation level NONE and dropped from the AIP. In
DAITSS 2 we will assume that if a file is in a SIP it is
intended for archiving, and affiliates will be responsible
for assembling appropriate SIPs.
The distinction between BIT and FULL has also proved
difficult to sustain, and there seems to be little added
functionality in maintaining it. Since DAITSS always
retains files from the SIP as originally submitted, if an
affiliate wants to ignore a migrated version they can
always do so. DAITSS 2 will eliminate the entire
concept of preservation level and attempt full
preservation treatment for all files.
The second issue involves "global" files and a kind of
transformation called "localization." Global files are sets
of files included in many packages. Commonly these are
files needed to validate XML descriptors, such as DTDs
and schema. Rather than storing them redundantly in
thousands of AIPs, the global files are stored once in
separate packages and referenced, as necessary, by links
from other AIPs. Although this seemed like a good idea
at the time, the maintenance of global files has added
considerable complexity to the code. Analysis shows
that the space savings are only about 1.6% of the archive
store. DAITSS 2 will eliminate the concept of global
files, and will include all required files in each AIP.
Localization is a DAITSS 1 function where a reference
within an archived file to an external file (for example, a
schema) is rewritten to refer to a locally archived
version. This requires DAITSS to keep both the original
and localized versions of the file. DAITSS 2 will skip
localization at the file level, and instead modify
validators to dynamically resolve references to the
external file from a local cache.

Break up the beast
Two features, initially thought to be desirable, have
proved problematic. DAITSS 2 will be comprised of
simple, independent components that each perform one
simple function. It is a requirement that each component
can be tested and developed independently of any other
component. This will make it simpler to modify or
extend existing functions and to integrate new functions.
For example, it would be possible to add a new risk
assessment service to the current chain of processing
without modifying any other service. Dividing DAITSS
into separate components will also allow us to parallelize
time-consuming tasks such as virus checking and
checksum calculation.
Further, we believe that exposing each functional
component as a stand alone service will allow
researchers to extend the system into novel workflows.
In short, rather then providing major changes in
functionality, we wish to simplify and support existing
functions but with a wider scope.

Implementation
This The second generation of the DAITSS software will
take a Web services approach. There are two main
competing architectural styles for Web services today: a

Remote Procedure Call (RPC) style, and the
Representational State Transfer (REST) style detailed by
Roy Fielding ([Fielding 2000]). SOAP is an example of
the RPC style, while REST is the basis for the classic
view of HTTP used on the Web. The Web service APIs
provided by Google, Amazon and Yahoo typically offer
both styles of access to their services. However, the
REST APIs are significantly more popular: Amazon has
reported that REST style requests comprise 80% of their
web service traffic ([Anderson 2006]).
Experience has shown that SOAP applications exhibit a
high degree of coupling between services. This state of
affairs results from very application-specific SOAP
actions that must communicate data structures from one
service, to the client, to other web servers. This has led
to ever expanding sets of standards and complex
frameworks to support what was, initially, a Simple
Object Access Protocol.
In contrast, the REST approach is centered around
resources. In HTTP, the most successful example of a
RESTful architecture, there are only six operations and
each of them are atomic. PUT creates a named resource,
GET retrieves it, POST modifies it, and DELETE
removes it. HEAD retrieves simple metadata for the
resource.
The state of a RESTful application is maintained as a set
of external resources. A client program effects the
progress of the application by performing incremental
changes using defined operations on externally stored
resources. Such limitations allow, counter-intuitively,
far greater flexibility on the part of client-based
applications, illustrating the key design strategy in
software engineering of using the least powerful
language to accomplish a task ([W3C 2006]).
In its purest form, the state of an application is driven by
resources that contain links to other services, the so-
called Hypertext As The Engine Of Application State
(HATEOAS). In DAITSS this is illustrated by the
Action Plan service described below. Briefly, this
service is given data identifying and characterizing a
format, and returns the location of an appropriate
transformation service that can effect format migration
and normalization. The archival policy of the FDA is
thus driven by a very simple service which publishes
links to other services.

The DAITSS Storage Service
Rather than implementing a wholly new version of
DAITSS at some time in the future, our plan is to
gradually morph DAITSS 1 into DAITSS 2 by pulling
out pieces of the code and replacing them with newly
written Web services that perform the same function.
Our first Web service has already been incorporated into
the production version of DAITSS used by the Florida
Digital Archive: a simple storage service loosely based
on the Amazon S3 Web service. The implementation of
this storage service resulted in a significant performance
increase for the FDA.
Each AIP is assigned an intellectual entity identifier
(IEID) and its constituent files and descriptors packaged
together as a GNU tar file. The MD5 checksum of the
tar file is computed as well as the checksums of the

individual files it contains. The assembled package is
then submitted to two geographically isolated servers
using SAN-attached file systems as long term storage.
The package-level checksum is used to ensure that the
initial transmission completed successfully, and is also
retained for subsequent fixity checking on the stored
AIP.
A typical HTTP conversation for the initial store is
shown for an AIP that has been assigned the IEID
E20080715_AAACAZ; the client stores the AIP using
the HTTP PUT function.
 Request:
 PUT /silo003/E20080715_AAACAZ HTTP/1.1
 User-Agent: DAITSS v1.5
 Host: storage.fcla.edu:3000
 Content-MD5: 2thsYe6iN5MvIBAJ5UMWCQ==
 Content-Type: application/octet-stream
 Content-Length: 32044941
 [... inline data ...]
Response:
 HTTP/1.1 201 Created
 Connection: close
 Date: Mon, 11 Aug 2008 16:08:42 GMT
 Content-Length: 0
Possible success and error conditions with the associated
response status codes include:
Success
 201 The resource was created
Client Error
 400 Missing resource name in PUT request
 403 Duplicate package name
 405 Storage location is full
 409 Checksum error
 411 Invalid request headers
Server Error
 500 Specific server error message included

The DAITSS 2 Service Architecture
We next describe the entirely services-based architecture
planned for the second generation of DAITSS. The
current monolithic application will be decomposed into a
set of relatively simple Web services, some of which are
described below. The composition of each service into a
complete Ingest process will require preservation events
to be recorded as they occur, and later assembled into a
complete record of the archiving process. Therefore
each function will create an event description expressed
in PREMIS XML, which will ultimately be assembled
into the AIP descriptor. Main components of the Ingest
Process are shown in Figure 1.

The Description Service
File format identification and validation is a central
function of DAITSS. In DAITSS 2, each data file is sent
to the Description Service for identification, validation
and characterization. The service uses DROID for a
preliminary identification of the file format, which is
used to select the appropriate validator. If DROID

Figure 1: DAITSS 2 Service Architecture

returns the information that the file is identified as
multiple formats associated with different validators, the
most appropriate validator is selected by the service. For
the formats most commonly presented to the Florida
Digital Archive, a modified version of JHOVE is used as
the validator, and the preliminary format is used to select
the initial JHOVE validation module. JHOVE may
include in its output the information that the file is
actually described by multiple formats; if so the most
appropriate format is selected by the service. The result
of JHOVE validation and characterization is then parsed
and mapped into PREMIS, and the JHOVE format
information is converted back to a PRONOM format
identifier.
A PREMIS XML document for that file is returned by
the Description Service to guide further Ingest
processing. The returned PREMIS document has three
sections: an object section that includes a single
PRONOM format identifier and technical metadata
according to an extension schema appropriate to that
format; an event section that describes the outcome of
the validation, including any anomalies found; and an
agent section that identifies the service used. An
abbreviated version of an example document is shown
below.
<object xsi:type="file">
 <objectIdentifier>
 <objectIdentifierType>
 DAITSS2</objectIdentifierType>
 <objectIdentifierValue>
 E20080715_AAACAZ/florida.tif
 </objectIdentifierValue>
 </objectIdentifier>
 <objectCharacteristics>
 <compositionLevel>0</compositionLevel>
 <size>3001452</size>
 <format>
 <formatDesignation>
 <formatName>TIFF</formatName>
 <formatVersion>4.0</formatVersion>
 </formatDesignation>
 <formatRegistry>
 <formatRegistryName>
 PRONOM</formatRegistryName>
 <formatRegistryKey>fmt/8
 </formatRegistryKey>
 </formatRegistry>
 </format>
 <objectCharacteristicsExtension>

<mix:mix xmlns:xsi="http://www.w3.org/
 2001/XMLSchema-instance" >
 ...
 </mix:mix>
 </objectCharacteristicsExtension>
 </objectCharacteristics>
</object>
<event>
 <eventIdentifier>
 <eventIdentifierType>DAITSS2
 </eventIdentifierType>
 <eventIdentifierValue>1</eventIdentifierValue>
 </eventIdentifier>
 <eventType>Format Description</eventType>
 <eventDateTime>2008-07-17T12:32:50
 </eventDateTime>
 <eventOutcomeInformation>
 <eventOutcome>Well-Formed and valid
 </eventOutcome>
 <eventOutcomeDetail>
 <eventOutcomeDetailExtension/>
 </eventOutcomeDetail>
 </eventOutcomeInformation>
</event>
<agent>
 <agentIdentifier>
 <agentIdentifierType>uri</agentIdentifierType>
 <agentIdentifierValue>
 http://daitss.fcla.edu/describe
 </agentIdentifierValue>
 </agentIdentifier>
 <agentName>Format Description Service
 </agentName>
 <agentType>Web Service</agentType>
 </agent>

The Action Plan Service
The Action Plan Service is sent the PREMIS document
produced by the Description Service and returns a simple
XML document containing one or more links to services
to be used to transform (migrate or normalize) the
associated file. If DAITSS is not capable of
transforming a given format, or if a particular file
contains too many anomalies to be reliably transformed,
the document will contain, instead of links, a stanza
noting the limitation.
The Action Plan service succinctly specifies the
migration and normalization policy of an installation of
DAITSS. The service illustrates a key feature of the

RESTful approach, which is to let links drive the process
of ingest. An example of a document returned by the
action plan service follows.
 <instructions>
 <normalization>
 <transformation>
 http://daitss.fcla.edu/transform/wave_norm
 </transformation>
 </normalization>
 <migration>
 <limitation>codec not supported
 </limitation>
 </migration>
 </instructions>
The Action Plan Service is driven by a set of XML
documents that serve a dual function: they are used
internally to specify the transformation services to be
applied, and they are published externally to document
our archival policy:
<action-plan format="WAVE" date="2008-07-02"
author="Andrea Goethals, FCLA">
 <processing>
 <normalization>Each audio stream in the WAVE
 file will be normalized into an uncompressed
 PCM(LPCM) audio stream with sample size of 16
 bits/sample.
 <transformation>
 http://daitss.fcla.edu/transform/wave_norm
 </transformation> libavcodec version: 51.40.4
 <limitations>
 <supported-codec>PCM</supported-codec>
 <supported-codec>MP3</supported-codec>
 </limitations>
 </normalization>
 </processing>
 <strategy>
 <original>Migrate to newer WAVE versions or to
 an open, standardized and well supported audio file
 format that is to be a good successor to WAVE.
 </original>
 <normalized> Migrate to an open, standardized and
 well supported audio stream format that is losslessly
 compressed.
 </normalized>
 </strategy>
 <timetable>
 <item action="review" date="2009-07-02"/>
 <item action="revise" date="2009-07-02"/>
 <item action="short-term" date="2009-07-02">
 Write or locate a converter which converts WAVE
 files with data in one of audio encoding formats
 listed in 3.1 to WAVE files in LPCM format.
 </item>
 </timetable>
</action-plan>

The Transformation Service
The current version of DAITSS provides both
normalization and migration of data files. The second
generation of DAITSS will support these transformations
via a collection of Transformation Services. A file is
submitted to the appropriate Transformation Service as

specified by the Action Plan service; the transformed file
is returned via HTTP. It is possible for multiple files to
be produced as output from a single submission. For
instance, DAITSS may normalize a PDF file into a
collection of TIFFs, one per page. For cases like these,
the Transformation Service returns a composite
document using the MIME multipart/mixed standard.
In some cases the Transformation Service is a locally
developed program. In many cases a Transformation
Service is simply an HTTP wrapper around an external,
probably open source, program such as Ghostscript,
ffmpeg, mencoder, or libquicktime. For these cases, a
simple specification of the action of the program suffices
to build the service.
<transformations>
 <transformation ID='WAVE_NORM'>
 <instruction> ffmpeg -i #INPUT_FILE# -sameq –a
 codec pcm_s16le #OUTPUT_FILE#
 </instruction>
 <extension>.wav</extension>
 <software>FFmpeg version SVN-r9102
 </software>
 <configuration> --prefix=/opt/local--
 prefix=/opt/local --disable-vhook--
 mandir=/opt/local/share/man --enable-shared --
 enable-pthreads --disable-mmx
 </configuration>
 <dependency>libavutil version: 49.4.0

 libavformat version: 51.12.1
 </dependency>
 </transformation>
 <transformation ID='AVI_NORM'>
 <instruction>mencoder #INPUT_FILE# -oac pcm –
 ovc lavc -lavcopts vcodec=mjpeg --o
 #OUTPUT_FILE#
 </instruction>
 <extension>.avi</extension>
 </transformation>
 <transformation ID='MOV_NORM'>
 <instruction>lqt_transcode -ac rawaudio -vc mjpa
 #INPUT_FILE# #OUTPUT_FILE#
 </instruction>
 <extension>.mov</extension>
 </transformation>
 <transformation ID='PDF_NORM'>
 <instruction>gs -sDEVICE=tiff12nc
 -sOutputFile=#OUTPUT_FILE# -r150 –dBATCH
 -dNOPAUSE #INPUT_FILE#
 </instruction>
 <extension>page%d.tif</extension>
 </transformation>

</transformations>

The AIP Service and subsequent processing
At this point both the original file and any derived
versions are submitted to an AIP Service, which acts as a
holding area for this intellectual entity. The PREMIS
object and event descriptions are also saved. When the
last file in the SIP has been fully processed, a complete
AIP descriptor is assembled combining information from

the original SIP descriptor with the saved object and
event information. Finally, the entire package is sent to
the Storage Service, which, as noted above, distributes
the AIP to multiple locations.

Conclusion
As noted above, we believe that dividing complex
services into simple, well understood components will
allow the creation of novel preservation workflows. One
new function under consideration is a risk assessment
service, which will accept information extracted from an
AIP descriptor and return the preservation risk associated
with the packages.
However, the architecture has other advantages. For one
thing, it will make it possible for the Florida Digital
Archive to share services with other preservation
repositories. Several institutions and projects are
developing Web services based systems or components,
including (but not limited to) The National Archives
(UK), the California Digital Library, PLANETS and
PRESERV. The FDA (and other DAITSS users) will be
technically capable of integrating externally-written
services if rights and organizational issues allow.
In addition, while the first generation of DAITSS is
actively maintained and distributed as open source
software, we have made little effort to promote its use in
the community, as our experience has been that DAITSS
is overly complex to configure and difficult to maintain.
The Florida Center for Library Automation has neither
the resources nor the mandate to exert significant effort
supporting external sites. We expect that DAITSS 2 will
be much easier to configure and operate, and that other
institutions would find it attractive to implement the
system or some of its component services. The
architecture is particularly advantageous to local sites,
which could customize the distribution version of
DAITSS by supplying their own action plans and
services as needed.

References
Anderson, T. 2006. WS-* vs the REST. The Register
April 29, 2006.
http://www.theregister.co.uk/2006/04/29/oreilly_amazon

Caplan, P. 2007. The Florida Digital Archive and
DAITSS: A Working Preservation Repository Based on
Format Migration. International Journal on Digital
Libraries, 20 March 2007, doi: 10.1007/s00799-007-
0009-6. Available at http://www.springerlink.com and
http://www.fcla.edu/digitalArchive/pdfs/IJDL_article.pdf

Fielding, R. 2000. Architectural Styles and the Design of
Network-based Software Architectures. University of
California, Irvine
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.ht
m

W3C, 23 February 2006. The Rule of Least Power. W3C
Technical Architecture Group.
http://www.w3.org/2001/tag/doc/leastPower.html

http://www.fcla.edu/digitalArchive/pdfs/IJDL_article.pdf

