
BagIt Fixer-Upper

Scaling BagIt Tools to Manage the Ingest of Petabytes of Digitization Work

Nick Krabbenhoeft
New York Public Library
34-11 Thompson Street

Long Island City, New York 11101
nickkrabbenhoeft@nypl.org

ABSTRACT

The New York Public Library has created over 1.5 PB of files from
digitizing over 50,000 audio and video items for the long-term
preservation of their content. This paper details the Library’s usage
of the BagIt File Packaging Format during Quality Assurance and
Audit Submissions functions as defined by OAIS. It also discusses
extensions of the bagit-python library in order repair bags that do
not pass those functions.

Working with thousands of terabytes stored in hundreds of thou-
sands of bags requires that our approaches to ingest scale appro-
priately. Common changes to bags such as the accidental creation
of system files in bags or purposeful edits of metadata files will
invalidate the entire bag. Noting and responding to these errors is
critical for improving workflows, but manual response is impos-
sible. Using the bagit-python library, NYPL has created tools to
selectively clean system files from bag directories and manifests,
update or add checksums, and create event logs of repairs.

KEYWORDS

Quality Assurance, Audit Submissions, Scalability, Fixity, BagIt,
Python, Digitization

ACM Reference format:

Nick Krabbenhoeft. 2017. BagIt Fixer-Upper. In Proceedings of iPres 2017,

Kyoto, Japan, September (iPres17), 5 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Before an archive commits to the long-term preservation of a sub-
mission, it must verify that it has received expected information.
The OAIS Reference Model defines two functions for checking con-
tent during ingest: Quality Assurance and Audit Submissions.[3]

Quality Assurance is performed after a producer has transferred
a SIP to the archive’s1 Receive Submission function. It is used to
“identify any file transfer or media read/write errors.” After passing
Quality Assurance, the Receive Submission function transfers the
SIP to the Generate AIP function. From there, the SIP and/or the

1This paper follows the OAIS text’s practice of referring to the organization preserving
information as an archive.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
iPres17, Kyoto, Japan

© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

Figure 1: Diagram of the subset of the OAIS functions dis-

cussed in this paper. Dotted boxes denote functional entities;

grey boxes denote functions, and text next to arrows denotes

information provided by one function to another.

AIP can be submitted to the Audit Submissions function in order
to “verify that submissions (SIP or AIP) meet the specifications of
the Submission Agreement.” If a SIP or AIP fails the audit, either
the producer can appeal the audit or the archive can request a new
SIP. Restated, Quality Assurance checks that the structure of the
SIP was not damaged in transit, and Audit Submissions checks that
the intellectual content of the SIP and/or AIP matches expectations.
See Figure 1 for a visualization of these relationships.

It is the archive’s responsibility to define how Quality Assurance
and Audit Submission functions are performed. The text of the
OAIS includes suggesions for methods such as using system logs
and/or hash functions for quality assurance (QA) and review com-
mittees for audits, but these are non-exclusive. In implementing
these functions at NYPL, two questions have shaped implementa-
tion decisions.

(1) How well do the QA and auditing methods scale?
(2) How can information generated by QA and auditing meth-

ods improve workflows?

iPres17, September, Kyoto, Japan Nick Krabbenhoeft

2 CASE STUDY: NEW YORK PUBLIC LIBRARY

The New York Public Library (NYPL) is currently digitizing over
200,000 audio, video, and film objects for long-term preservation.
The items have a high risk of loss due to their deteriorating media,
obsolescing playback equipment, and dwindling communities of
playback engineers. NYPL’s goal is to transfer all of the items to
more stable media, primarily digital, within 10 years.

The current rate of digitization produces terabytes of material
from multiple vendors every week. In order to confirm the success-
ful transfer of SIPs, NYPL adopted the BagIt File Packaging Format
created and maintained by John Kunze, Justin Littman, Liz Madden,
Ed Summers, Andy Boyko and Brian Vargas. The BagIt format is a
POSIX-style file and directory structure that allows for validating
three types of fixity information.

Hashes comparing stored cryptographic hashes against ones
generated from payload files

0xum comparing a stored count and total size of payload
files against newly generated numbers

Completeness comparing a stored list of payload filepaths
against those currently in the payload

The bag consists of data directory that contains the payload and
several metadata files that record the above fixity information and
other metadata. For NYPL, the payload comprises the preservation
master files, metadata files, and service copies from a single digitized
object.

2.1 Types of Fixity

The gold standard in fixity information of digital files is the cryp-
tographic hash. Because generating a hash for an object after a
transfer and comparing it to a previously known value can detect
most bit-level losses, it makes sense as the mechanism for check-
ing the technical accuracy of a file transfer. Recommendations for
hash comparisons are common in digital preservation documents
from the OAIS Standard to the US Government’s Federal Agencies
Digitization Guidelines Initiative[4].

However, hash calculation is I/O-bound. Every bit of a object
must be read to calculate a hash.

There are other types of fixity information that are much faster
to generate. For example, if a group of digital objects have not
changed, then metadata describing the group like the total number
of files, the total size of the files, and the list of filepaths, should
remain fixed as well.

Unfortunately, these properties are not as sensitive to change as
a cryptographic hash. A bit flip would not effect any of these values.
On the other hand, these coarse measures of fixity are far more
responsive to coarse modifications such as deleted files, accidentally
renamed files, and renamed files.

While these other types of fixity information can not replace
hash validation in a Quality Assurance function, using them prior to
hashing can immensely speed up the discovery of common errors.

2.2 Benefits of BagIt for Quality Assurance

To make any QA method scalable, the required fixity information
must be stored in a machine-readable format. For hashes, there are
two widely used formats:

sidecar files storing anmd5 hash for example.mov in example.
mov.md5

manifest files listing the relative path and hash for a direc-
tory of files in a single CSV

These common formats, and the many tools that can read them,
make hash validation relatively easy to adopt as a quality assurance
method, but for other types of fixity information, there are very
few common formats.

A single organization may specify a standard way to store other
types of fixity, and even create software to generate and check
this method. But, without community adoption, these methods are
fragile at best and lost opportunity costs at worst.

The BagIt File Packaging Format defines a standard format for
storing the total size and total number of files in a payload, known
as the 0xum (total-file-size.total-file-count). It also places strict
requirements on the hash manifest. Th path for every file in the
payload must be represented in a hash manifest. As a result, it is
possible to check that a bag is complete, that its payload contains
only expected files, no more no less.

In terms of commonality, the BagIt format is both an IETF RFC
and an open source specification on GitHub. Tools to create and val-
idate bags have been implemented in multiple languages, including
Java[10], Python[12], and Ruby[8], making these additional fixity
checks widely available. Additionally, most implementations are
open-source, allowing users to further customize and adapt the tools
as needed. At NYPL, the Python, Ruby, and Java implementations
have been adopted by different processes in the Library.

2.3 Disadvantages of BagIt for Quality

Assurance

Before discussing BagIt’s usage with the NYPL workflow, it is im-
portant to highlight a few difficulties that can result from adopting
BagIt.

First, the strictness of completeness. The manifests of a valid
bag must list every file in the payload directory. This requirement
conflicts with the behavior of operating systems that zealously cre-
ate hidden system files to store usability data such as preferred file
sorting order, file thumbnails, and indexing information. Browsing
a payload directory after bagging often causes these files to appear,
which renders the manifests incomplete and the bag invalid. Even
if the system files existed at the time of bagging, operating systems
will silently modify them with new usability information, which
renders the hashes inaccurate and the bag invalid.

Second, multiple implementations of a standard can result in
multiple interpretations. Ideally, a BagIt tool should create a bag
that can be validated by other BagIt tools, but edge cases can make
this difficult. For example, Mac systems can create a file named
Icon\r. When written into a manifest, the \r acts as a carriage
return, making it impossible for other BagIt tools to parse the
manifest correctly. Following the requirement in the BagIt RFC
to write filepaths with percent-encoding avoids this problem, but
users should be aware that malformed bags can cause validation
problems.2

2The development of a conformance suite by Library of Congress staff has made it
much easier to test an implementation for common errors. [2]

BagIt Fixer-Upper iPres17, September, Kyoto, Japan

Using BagIt successfully requires adapting workflows to these
challenges.

3 NYPL WORKFLOW

NYPL’s ingest workflow can be divided into roughly 4 stages.

(1) Bags are received on hard drives from digitization labs and
validated.

If a bag is not valid, repairs are made when possible
or a new transfer is requested.

(2) Valid bags are transferred to quality control and audited
against the library’s published specifications for signal
quality, file format, metadata values, and file organization.
[5] [7].

If a bag does not pass quality control, repairs are
made when possible or redigitization is requested.

(3) QC’d Bags are transferred to a staging area on network
storage and validated after transfer.

(4) During ingest to the repository, bags are validated again.

Like most real-world preservation workflows, the NYPL ingest
process does not mirror the simplicity of the OAIS model (Figure 1).
For example, there is no single Quality Assurance function. In-
stead, quality assurance is performed each time the bag moves to a
different storage medium.3

This workflow also makes allowances for alterations to the SIP.
While the Generate AIP function can include file format conversions
and metadata gathering or conversion, it does not explicitly include
provisions for altering the contents of SIP. However, despite efforts
to produce comprehensive specifications, bags can fail the quality
control processes.

In the standard, failure during the Audit Submissions function
can result in either the producer negotiating for a pass or the archive
requesting a new submission. No response to failure is discussed
for the Quality Assurance function.

In practice, repair is themost preferable action, when appropriate.
Whether the specifications were not exact enough or a the cause
of failure was not severe enough, the cost of repair can be much
lower than resubmission.

4 COMMON QA AND AUDIT FAILURES

In addition to signaling problems with a specific bag, QA and audit
failures often highlight systemic workflow problems that require a
combination of communicating with producers and refining speci-
fications. The following lists the most common causes of QA and
audit failures, why they are flagged as failures, and how they are
remediated:

3The Inner OAIS-Outer OAIS model presents an interesting approach to the challenge
of mapping real-world work to OAIS ideals. [13] It is possible to model the above
workflow as a three linked OAIS archives, a receiving archive, which accepts and man-
ages hard drives on behalf of its designated community, the quality control archive,
which accepts and manages bags on behalf of its designated community, the reposi-
tory archive, which accepts and manages digitized objects on behalf of its designated
community, the access unit. Each “archive” maintains their own functional entities for
Ingest (including a Quality Assurance function), Data Management, Storage, Dissemi-
nation, Administration, and Preservation Planning, and their work is coordinated by
an Outer Administration and Preservation Planning entities. While full documentation
of organizational units at this level of detail may be impractical, the scalability of
the OAIS Reference Model to describe large and small “archives” is an interesting
theoretical question.

4.1 Invalid Metadata

Submitted metadata is validated against a schema to ensure correct
usage of controlled vocabulary and completion of required fields. A
manual spot check of a bag’s metadata revealed that a vendor had
accidentally omitted a set of required fields while updating their
workflow. Further investigation showed that this omission was not
caught because a typo in an early version of the schema rendered
those fields optional, and that several hundred bags shared the same
problem.

The missing metadata included fields required for repository
ingest and used to create descriptive records. In order to prevent
future metadata omissions, the metadata schemas received a thor-
ough review during which a similar mistake was found and fixed.
To alleviate the hold on repository ingest and description, tools
were developed to repair metadata for all affected bags.

4.2 System Files

As discussed previously, system files can render a bag invalid. The
system files themselves do not pose a preservation risk, but their ex-
istence indicates that when the bag was QC’d, it was likely mounted
with read-write privileges. This exposes the bag to the risk of cor-
ruption or deletion through human error. To prevent this possibility,
the QC workstation is checked and configured to mount all drives
as read-only.

4.3 File Name Changes

Part of the SIP packaging specification includes storing all preser-
vation master files in a directory named PreservationMasters,
even if the folder only includes a single file. Digitization engineers
have bagged a project and then removed the s from the directory
name, PreservationMaster, when they realized it only contained
one file. This change causes a bag completeness failure, since the
file path listed in the bag manifest no longer exists.

Since the folder name is part of the packaging specifications,
it is also built into the repository ingest process. Bags without
this directory cannot be ingested to the repository. Addressing
this problem required working with engineers to make sure the
specifications were written clearly.

4.4 Missing Checksums

The SIP specifications require that metadata files are packaged
alongside the preservation master. An early workflow would bag
the digitized media and then add the appropriate metadata files to
the bag. This change causes a bag completeness error, since the
metadata files are not listed in the manifest.

While hashes are most critical to ensure the fixity of preservation
master files, we are also interested in ensuring the fixity of metadata
files because they contain an audit trail of how the file was created.
Again, the solution was to work with the engineers to make sure
the specifications were written clearly.

4.5 Missing Files

The most worrying error is a bag completeness validation failing
because of missing files. This is the realization of the accidental
deletion specter discussed in regards to system files. An audit of our
staging environment once revealed a bag that was missing most

iPres17, September, Kyoto, Japan Nick Krabbenhoeft

of its files. Fortunately, the original item could re-digitized, but
the discovery triggered an account audit of our staging server and
review of our tools and procedures in order to reduce the chance
of complete loss again.

5 AUTOMATING BAG REPAIR

Except for the last example, each of the above failures can be re-
paired. Bags remain eligible for ingest as long as it can be shown
that a failure did not impact the fixity of the preservation master or
mezzanine. However, the interlocking nature of 0xum, complete-
ness, and hash fixity in bags means that any change to a bag’s
payload likely requires edits to multiple parts of the bag.

For example:

• adding metadata files to a bag requires adding the path
and hash for each file to the bag manifest and updating the
0xum with the new number of files and total size

• removing system files from a bag requires searching for all
common system file names in a bag, comparing that list to
the paths in the manifest, and deleting only those files not
listed in the manifest

• updating all metadata files with missing technical fields
requires regenerating hashes for only the metadata files,
recording them to the manifests, and then updating the
0xum with the new payload size.

These are relatively simple but very tedious procedures and prone
to human error.

In response, NYPL extended the bagit-python library. The tool
update_bag.py automates the repair of bags. [6] Using themethods
of the Bag class within bagit-python, update_bag.py performs set
operations to identify missing or unwanted files, add or update
fixity information in the bag manifest and 0xum, and validate the
bag.

Performing these repairs at scale also requires automating the
creation of an event log to serve as an audit trails. At this time,
every update performed by update_bag.py creates a PREMIS event
record that is saved as a JSON file within the bag. Future repairs
with update_bag.py are appended to the JSON file. For simpler
events like an 0xum update, both the old and new 0xum are recorded
in the PREMIS event. For more complex events like rewriting the
hash manifests, copies of the original manifests are kept. The tool
is available as part of the ami-tools package developed by NYPL.

6 DISCUSSION

Returning to the issue of repair andOAIS, this exploration of Quality
Assurance and Audit Submissions functions at NYPL has reiterated
how the density of OAIS functions and their relationships remains
a hurdle to working with the Reference Model. The descriptions of
the functions in the Model are carefully constructed to be neither
overly proscriptive nor prescriptive. This leaves the responsibility
of creating a shared understanding of allowed actions to the OAIS
user community.

But the shared understanding remains elusive. What is described
here as a metadata repair as part of the Generate AIP function in the
Ingest functional entity, might be described as a preconditioning
action that took place prior to ingest. [9] Or according to a proposal
to create a Pre-Ingest functional entity it might be described as a

pre-submission action on a Pre-Submission Information Package.
[11] It remains unclear if the Reference Model is incapable of filling
community needs for a common language to describe workflows or
if the community is unwilling to engage with the Reference Model
as a common language.

More prosaicly, the BagIt format is an interesting match with
the Reference Model. Its form is at once reminiscent of the archival
box and the OAIS Information Package. Although update_bag.py
contains logging features born of quality assurance needs, not long-
term storage needs, others in the BagIt community have proposed
more rigorous methods to update bags over time. For example,
the Restful Bag Server specification proposes the use of version
control methods like Git and Mercurial to store a fuller history
of changes to the bag. [1] Enriching the container with its own
PDI, the bag could mature into a common format of AIP. Already
it containerizes material for ingest into the Digital Preservation
Network (DPN) [?] and APTrust [?] and can be both input and
output for Archivematica.

At the same time, it would be best if BagIt is one of multiple
common AIP formats. For all of its benefits, BagIt is still based on
a metaphor of managing the digital world like the physical world.
When bags are ingested into DPN’s and APTrust’s cloud storage,
they are turned into a tarball so that the entire bag can be treated
by a single object by the object-based storage systems employed by
S3, Azure, and other storage providers. Regaining access to one file
in the bag requires downloading the entire bag and unzipping it.

7 CONCLUSION

BagIt is a mature technology that lends itself well to Quality As-
surance functions in OAIS workflows. At NYPL, usage of the BagIt
Format is a key component in the audio, video, and film digitization
workflow. It allows for consistent, scalable fixity checking. It is also
a finicky format that becomes invalid as a result of a litany of small
changes or inconsistencies. In the field of digital preservation, this
is feature not a bug. Even in the Generating AIP function where
changes to the SIP are allowed.

The sensitivity to fixity problems forces the archive to consider
how its infrastructure and workflows interact with the material
that they manage. Lack of robustness magnifies irregularities in
workflows that can effect fixity of submitted packages, and the
accessibility of its open-source implementations allow for extension
and customizability of these tools to fit very specific workflow
needs.

8 REFERENCES

REFERENCES
[1] Chris Adams. 2014. Restful Bag Server. https://github.com/acdha/

restful-bag-server. (2014).
[2] Chris Adams and John Scancella. 2016. BagIt Conformance Suite. https://github.

com/LibraryOfCongress/bagit-conformance-suite. (2016).
[3] CCSDS. 2012. Reference Model for an Open Archival Information System. ISO ISO

14721:2012. CCSDS.
[4] FADGI Audio-Moving ImageWorking Group. 2016. DigitizingMotion Picture Film.

Technical Report. Federal Agencies Digitization Guidelines Initiative. http://www.
digitizationguidelines.gov/guidelines/FilmScan_PWS-SOW_20160418.pdf

[5] Rebecca Holte, Nick Krabbenhoeft, Jonah Volk, Genevieve Havemeyer-King,
and Ben. Turkus. 2017. AMI Specifications. https://github.com/nypl/
ami-specifications. (2017).

[6] Nick Krabbenhoeft. 2017. ami-tools. https://github.com/NYPL/ami-tools. (2017).

BagIt Fixer-Upper iPres17, September, Kyoto, Japan

[7] Nick Krabbenhoeft, Jonah Volk, and Genevieve Havemeyer-King. 2016. AMI
Metadata. https://github.com/nypl/ami-metadata. (2016).

[8] Jamie Little and others. 2017. bagit. https://github.com/tipr/bagit. (2017).
[9] Peter McKinney. 2012. DIGITAL CONTENT PRECONDITIONING POLICY. Policy.

Joint Operations Group (National Library of NewZealand, Archives NewZealand,
Internal Affairs). 19–24 pages.

[10] John Scancella and others. 2017. bagit-java. https://github.com/
LibraryOfCongress/bagit-java. (2017).

[11] Barbara Sierman and Shira Peltzman. 2015. Pre-ingest. http://wiki.dpconline.
org/index.php?title=Pre-ingest. (2015).

[12] Ed Summers, Chris Adams, and others. 2017. bagit-python. https://github.com/
LibraryOfCongress/bagit-python. (2017).

[13] Eld Zeirau and Nancy McGovern. 2014. Supporting Analysis and Audit of
Collaborative OAISâĂŹs by use of an Outer OAIS âĂŞ Inner OAIS (OO-IO) Model.
In Proceedings of the 11th International Conference on Digital Preservation (State
Library of Victoria, Melbourne, Austrailia, October 2014). Melbourne, Austrailia,
209–218.

